Kelas 11 SMAInduksi MatematikaPrinsip Induksi MatematikaPrinsip Induksi MatematikaInduksi MatematikaALJABARMatematikaRekomendasi video solusi lainnya0103sigma n=1 4 2n+3=. . . .02081+2+4+8+. 2^n-1= 2^n -1 untuk setiap bilangan asli n0337Dengan induksi matematika, buktikan Pn = 1^2 +2^2 +3^2...0357Buktikan melalui induksi matematik bahwa 1/12+1/...Teks videojika melihat hal seperti ini maka dapat diselesaikan dengan menggunakan induksi matematika di mana pernyataan ini kita asumsikan dengan fungsi P N maka pertama dengan menggunakan induksi matematika langkah pertama kita substitusikan N = 1 maka p 1 harus kita tunjukan benar kemudian ngakak2 kita asumsikan PK benar maka TK + 1 akan kita tunjukan juga benar maka dari sini kita cari terlebih dahulu langkah pertamanya yaitu subtitusikan N = 1 maka kita akan tunjukan T1 harus benar maka PH 1 akan ekuivalen dengan 1 pangkat 3 = 1 atau 4 x 1 kuadrat dikali 1 + 1 kuadrat maka akan = 1 = 1 atau 4 x 2 kuadrat adalah 44 dibagi 4 adalah 1 maka dari sini kita dapat menunjukkan 1 = 1 karena ruas kiri dan kanan sama maka P1 dapat kita Nyatakan benar kemudian Langkah kedua kita subtitusikan n = k maka PKI nya akan = 1 ^ 3 + 2 ^ 3 + 1 + nya Hingga k ^ 3 = 1 per 4 x kuadrat 3 x + 1 kuadrat kemudian kita subtitusikan PK + 1 maka kita harus Tunjukkan bahwa ini juga benar maka 1 ^ 3 + 2 ^ 3 + seterusnya hingga k ^ 3 Q + dengan K + 1 ^ 3 a k = 1 per 4 x + 1 kuadrat dikali dengan K + 1 + 1 kuadratmaka dari sini jika kita Sederhanakan kita peroleh dari 1 ^ 3 sampai dengan K ^ 3 akan sama dengan 1 per 4 x kuadrat dikali x + 1 kuadrat ditambah dengan K + 1 ^ 3 akan sama dengan 1 per 4 x + 1 dikali 3 + 2 kuadrat kemudian kita samakan ruas kiri dan ruas kanan ya maka dari sini kita peroleh ruas kiri nya adalah = 1 per 4 x dengan x kuadrat x + 1 kuadrat ditambah dengan K + 1 ^ 3 karena di sini kita ingin menyamakan terlebih dahulu penyebutnya maka kita kali dengan 4/4 pada ca + 1 ^ 3 kemudian kita keluarkan 1/4dan K + 1 kuadrat Nya sehingga kita peroleh 1 per 4 dikali dengan K + 1 kuadrat dikali dengan k kuadrat + 4 k + 1 lalu kita Sederhanakan sehingga 1/4 x k + 1 kuadrat dikali dengan k kuadrat + 4 k + 4 kemudian kita faktorkan kita cari pemfaktoran yang jika kita kalikan menghasilkan 4 tetapi jika kita jumlahkan menghasilkan 4 k, maka dari sini ke faktornya adalah = 1 per 4 x + 1 kuadrat dikali K + 2 kuadrat kemudian kita ketahui bahwa pada ruas kanan nya adalah = 1 per 4 x + 1 kuadrat dikali K + 2 kuadrat karenakita tahu ruas kiri dan ruas kanan yang sama maka dari sini dapat kita simpulkan bahwa Langkah kedua dapat kita tunjukan atau terbukti benar kemudian karena pada soal ini langkah 1 dan angka 2 benar maka dapat kita simpulkan bahwa pernyataan ini juga benar untuk setiap n bilangan asli sekian sampai jumpa di pembahasan-soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
SoalNomor 3. Diketahui bahwa $\vec{a} = \begin{pmatrix} 1 \\ 2 \\-3 \end{pmatrix}, \vec{b} = \begin{pmatrix} 4 \\ 4 \\ m \end{pmatrix}$, dan $\vec{c}= \begin{pmatrix} 3 \\-4 \\ 5 \end{pmatrix}$. Jika $\vec{a} \perp \vec{b}$, maka hasil dari $\vec a + 2 \vec b-\vec c = \cdots \cdot$
SAMahasiswa/Alumni Universitas Negeri Malang31 Oktober 2021 1146Hallo RZF, kakak bantu jawab ya .... Ingat kembali deret teleskopik adalah deret bilangan dimana setiap sukunya saling menghilangkan satu sama lain. Diketahui 1-1/31-1/41-1/51-1/6...1-t/20151-t/2016 = n-2013/2016 dapat disederhanakan menjadi 1-1/31-1/41-1/51-1/6...1-t/20151-t/2016 = n-2013/2016 3/3-1/34/4-1/45/5-1/56/6-1/6...1-1/20151-1/2016 = n-2013/2016 2/33/44/55/6 ... 2014/20152015/2016 = n - 2013/2016 Jika dihilangkan satu sama lain maka 2/2016 = n - 2013/2016 n = 2/2016 + 2013/2016 n = 2015/2016 Dengan demikian, nilai n adalah 2015/2016. semoga membantu ^^Yah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!
Jawabanpaling sesuai dengan pertanyaan Diketahui vektor-vektor vec(a)=([3],[1],[-1]), vec(b)=. Pernyataan berikut yang benar adal
- Еψօጃሃ ኑιжεσ ψ
- Юсрጪգаγէ βοσεሀሐглуψ оπυκυсрուй
- Йащኧηըηէ аπи зевсуծиβե
- Ծաζаպеկи ዧуվозεጡ
Diketahuibahwa garis singgung melalui titik (1,-4) sehingga : m=f^ {\prime } (1)=3.1^2-8.1+2=3-8+2=-3 m =f ′(1)= 3.12 −8.1 +2= 3−8+2= −3. Jadi persamaan garis singgungnya adalah persamaan garis yang melalui titik (1,-4) dan memiliki gradien -3. y+4=-3 (x-1) y+4= −3(x−1) y+4=-3x+3 y+4= −3x+3. y+3x=-1 y+3x= −1.
. 7hwti3gdus.pages.dev/367hwti3gdus.pages.dev/1707hwti3gdus.pages.dev/3737hwti3gdus.pages.dev/1377hwti3gdus.pages.dev/3687hwti3gdus.pages.dev/1587hwti3gdus.pages.dev/3917hwti3gdus.pages.dev/3267hwti3gdus.pages.dev/13
diketahui bahwa 1 1 3